Curso Online de Critérios de divisibilidade

Curso Online de Critérios de divisibilidade

Esse curso é para pessoas que desejam aprender critérios de divisibilidade de forma fácil e o jogo dos sinais que complica muito mais com...

Continue lendo

Autor(a):

Carga horária: 4 horas

Por: R$ 23,00
(Pagamento único)

Certificado digital Com certificado digital incluído

Esse curso é para pessoas que desejam aprender
critérios de divisibilidade
de forma fácil
e o jogo dos sinais que complica muito
mais com mais e menos com menos

Tenho conhecimentos em inglês ,informática.



  • Aqui você não precisa esperar o prazo de compensação do pagamento para começar a aprender. Inicie agora mesmo e pague depois.
  • O curso é todo feito pela Internet. Assim você pode acessar de qualquer lugar, 24 horas por dia, 7 dias por semana.
  • Se não gostar do curso você tem 7 dias para solicitar (através da pagina de contato) o cancelamento ou a devolução do valor investido.*
* Desde que tenha acessado a no máximo 50% do material.
  • Matemática, Curso de :

    Matemática, Curso de :

    Critérios de divisibilídade

  • Iniciando:

    Iniciando:

    Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se efetuar a divisão. Essas regras são chamadas de critérios de divisibilidade.  Divisibilidade por 2 Um número natural é divisível por 2 quando ele termina em 0, ou 2, ou 4, ou 6, ou 8, ou seja, quando ele é par. Exemplos: 1) 5040 é divisível por 2, pois termina em 0. 2) 237 não é divisível por 2, pois não é um número par

  • Divisibilidade por 3

    Divisibilidade por 3

    Divisibilidade por 3 Um número é divisível por 3 quando a soma dos valores absolutos dos seus algarismos for divisível por 3. Exemplo: 234 é divisível por 3, pois a soma de seus algarismos é igual a 2+3+4=9, e como 9 é divisível por 3, então 234 é divisível por 3.  Divisibilidade por 4 Um número é divisível por 4 quando termina em 00 ou quando o número formado pelos dois últimos algarismos da direita for divisível por 4.

  • Continuando:

    Continuando:

    Exemplo: 1800 é divisível por 4, pois termina em 00. 4116 é divisível por 4, pois 16 é divisível por 4. 1324 é divisível por 4, pois 24 é divisível por 4. 3850 não é divisível por 4, pois não termina em 00 e 50 não é divisível por 4.  Divisibilidade por 5 Um número natural é divisível por 5 quando ele termina em 0 ou 5.

  • Continuando:

    Continuando:

    Exemplos: 1) 55 é divisível por 5, pois termina em 5. 2) 90 é divisível por 5, pois termina em 0. 3) 87 não é divisível por 5, pois não termina em 0 nem em 5.  Divisibilidade por 6 Um número é divisível por 6 quando é divisível por 2 e por 3. Exemplos: 1) 312 é divisível por 6, porque é divisível por 2 (par) e por 3 (soma: 6). 2) 5214 é divisível por 6, porque é divisível por 2 (par) e por 3 (soma: 12). 3) 716 não é divisível por 6, (é divisível por 2, mas não é divisível por 3). 4) 3405 não é divisível por 6 (é divisível por 3, mas não é divisível por 2).

  • Continuando:

    Continuando:

    Divisibilidade por 8 Um número é divisível por 8 quando termina em 000, ou quando o número formado pelos três últimos algarismos da direita for divisível por 8. Exemplos: 1) 7000 é divisível por 8, pois termina em 000. 2) 56104 é divisível por 8, pois 104 é divisível por 8. 3) 61112 é divisível por 8, pois 112 é divisível por 8. 4) 78164 não é divisível por 8, pois 164 não é divisível por 8

  • Divisibilidade por 9

    Divisibilidade por 9

    Divisibilidade por 9 Um número é divisível por 9 quando a soma dos valores absolutos dos seus algarismos for divisível por 9. Exemplo: 2871 é divisível por 9, pois a soma de seus algarismos é igual a 2+8+7+1=18, e como 18 é divisível por 9, então 2871 é divisível por 9.  Divisibilidade por 10 Um número natural é divisível por 10 quando ele termina em 0. Exemplos: 1) 4150 é divisível por 10, pois termina em 0. 2) 2106 não é divisível por 10, pois não termina em 0

  • Divisibilidade por 11:

    Divisibilidade por 11:

    Divisibilidade por 11 Um número é divisível por 11 quando a diferença entre as somas dos valores absolutos dos algarismos de ordem ímpar e a dos de ordem par é divisível por 11. O algarismo das unidades é de 1ª ordem, o das dezenas de 2ª ordem, o das centenas de 3ª ordem, e assim sucessivamente. Exemplos: 1) 87549 Si (soma das ordens ímpares) = 9+5+8 = 22 Sp (soma das ordens pares) = 4+7 = 11 Si-Sp = 22-11 = 11 Como 11 é divisível por 11, então o número 87549 é divisível por 11. 2) 439087 Si (soma das ordens ímpares) = 7+0+3 = 10 Sp (soma das ordens pares) = 8+9+4 = 21 Si-Sp = 10-21 Como a subtração não pode ser realizada, acrescenta-se o menor múltiplo de 11 (diferente de zero) ao minuendo, para que a subtração possa ser realizada: 10+11 = 21. Então temos a subtração 21-21 = 0. Como zero é divisível por 11, o número 439087 é divisível por 11.

  • Continuando:

    Continuando:

     Divisibilidade por 12 Um número é divisível por 12 quando é divisível por 3 e por 4. Exemplos: 1) 720 é divisível por 12, porque é divisível por 3 (soma=9) e por 4 (dois últimos algarismos, 20). 2) 870 não é divisível por 12 (é divisível por 3, mas não é divisível por 4). 3) 340 não é divisível por 12 (é divisível por 4, mas não é divisível por 3).

  • Continuando:

    Continuando:

     Divisibilidade por 12 Um número é divisível por 12 quando é divisível por 3 e por 4. Exemplos: 1) 720 é divisível por 12, porque é divisível por 3 (soma=9) e por 4 (dois últimos algarismos, 20). 2) 870 não é divisível por 12 (é divisível por 3, mas não é divisível por 4). 3) 340 não é divisível por 12 (é divisível por 4, mas não é divisível por 3).

  • Continuando:

    Continuando:

    340 não é divisível por 12 (é divisível por 4, mas não é divisível por 3).  Divisibilidade por 15 Um número é divisível por 15 quando é divisível por 3 e por 5. Exemplos: 1) 105 é divisível por 15, porque é divisível por 3 (soma=6) e por 5 (termina em 5). 2) 324 não é divisível por 15 (é divisível por 3, mas não é divisível por 5). 3) 530 não é divisível por 15 (é divisível por 5, mas não é divisível por 3).


Matricule-se agora mesmo Preenchendo os campos abaixo
R$ 23,00
Pagamento único
Processando... Processando...aguarde...

Desejo receber novidades e promoções no meu e-mail:


  • Matemática, Curso de :
  • Iniciando:
  • Divisibilidade por 3
  • Continuando:
  • Divisibilidade por 9
  • Divisibilidade por 11:
  • Continuando:
  • Números primos:
  • Continuando:
  • Números naturais:
  • Continuando:
  • MMC
  • Continuando:
  • Propriedades do mmc
  • Fração:
  • Continuando:
  • Números primos:
  • Continuando:
  • Regra dos sinais:
  • continuando:
  • Continuando:
  • Leitura
  • Explicando:
  • Continuando:
  • exercicios
  • Exemplos:
  • Continuando: